
User’s Guide to OSIV 2.1

James Strother

Open

Source

Image

Velocimetry

Installation

Chapter 1

Chapter 1: Installation 3

The OSIV suite may be installed either from pre-built binaries or by compiling the source code. In general,
novices will find installation from pre-built binaries more convenient, while more experienced users may
appreciate the ability to run on platforms for which no pre-built packages exist or to customize the OSIV
build. Regardless of the installation method which you choose, you will need to have the TIFF, PNG, and
fftw3 libraries installed on you system. If your distribution does not provide pre-built packages for these
libraries (most do), then the TIFF library may be downloaded at www.libtiff.org, the PNG library may be
downloaded at www.libpng.org, and the fftw3 library may be downloaded at www.fftw.org. If you attempt
to install without these libraries, the installer will inform you which of the libraries are missing.

Section 1: Installing from a binary RPM

RPM packages can be used with several common linux distributions. All available RPMs can be downloaded
from the OSIV website. You should take care to download an RPM which is appropriate for your system.
When you have found the right RPM, you can install with a command of the form

$ rpm -i osiv-2.1.2-opensuse110.i386.rpm

If an RPM for your system is not available, then you can still install from the source code.

Section 2: Installing from a Debian package

Debian packages are available for the most recent Debian releases, and can be downloaded from the OSIV
website. To install the package to your system, you should run a command of the form

$ dpkg -i osiv_2.1.2_lenny_i386.deb

Section 3: Source Installation
Compiling OSIV from the source code is relatively simple, and provides the fastest code possible. Before
you begin, you must acquire the development files for the TIFF, PNG, and fftw3 libraries. If you installed
these libraries from the source code, then the headers have already been installed. If you installed these
libraries as pre-built binaries, then you may also need to install additional development packages (typically
with names sufficed with “-devel” or “dev”).

After you have installed the necessary library headers, you may download the source code from the
OSIV website into a convenient directory on your hard drive. The source code can be decompressed and
unpackaged with this command

$ cat osiv-2.1.2.tar.gz | gunzip | tar xvf -

The configure script in the top directory allows you to customize the build for your system. In most
cases the configuration script can be run without any options

$ cd osiv-2.1.2

$./configure

If you would prefer to customize the build, the OSIV suite may be built with a number of options. The
suite may be built with a non-default compiler, with more aggressive optimization flags, using alternative
libraries, or by directing installation to a non-default location. The list of available options may be viewed
with the command

$./configure --help

When you have come to a satisfactory configuration, you may begin compilation with the command

$ make

If the build completes without error, you may now install the programs onto your system. As a user with
write permissions for the installation direction, run the following command

$ make install

4 Chapter 1: Installation

If you intend to leave the source code on your system, you should probably clean up the temporary files that
were generated during the build. No harm results from leaving them on your system, but they needlessly
occupy disk space. Running the following command will clean up the source tree

$ make clean

Getting Started

Chapter 2

6 Chapter 2: Getting Started

OSIV is a set of programs for performing particle image velocimetry (PIV) analysis, a ubiquitous technique
in modern fluid mechanics for visualizing flow fields. This chapter will give you a very brief introduction
to the package so that you will be able to starting using the software as soon as possible. Later chapters
will explain each of the algorithms that are provided in the package, and will provide references to papers
in the literature with detailed explanations of each algorithm’s advantages and disadvantages. Please visit
the website if you have any questions or comments, or if you would like to file a bug report.

Section 1: Provided Programs

The OSIV suite contains four programs to perform particle image velocimetry. The most important program
provided by the suite, osiv corr , accepts images and calculates flow velocity vectors. This program
performs all the real work of PIV. The second program, osiv draw , accepts the output generated by
osiv corr and generates publication quality flow field figures. The third program, osiv synth , is used
to generate synthetic images to test the accuracy of the various algorithms provided by osiv corr . The
last program, osiv dump, is used to extract the contents of the binary format produced by osiv corr
into an often convenient text format.

Section 2: Performing cross-correlation

For all of the following examples, you will need to have a pair of images to perform PIV calculations. If you
do not yet have images of your own, images may be downloaded from the OSIV website. The examples that
follow will assume that are are working on the files flap0.tif and flap1.tif, though the names of any TIFF
image pair may be substituted.

Each of the programs provided with OSIV have default values for all of the parameters required to
perform PIV. Though it is highly recommended that a user invest the time necessary to become familiar
with the function of each parameter, the default values should provide satisfactory initial results. Thus, you
may perform PIV cross-correlation of the images flap0.tif and flap1.tif with the following simple command

$ osiv_corr flap0.tif flap1.tif

This will produce a single file osiv.out which contains the resulting displacement vectors. You should
probably not try to view the contents of this file directly as the data is stored in a binary format that will
likely cause your terminal undue difficulty. A binary format was chosen as it is much faster, smaller, and
extensible than an equivalent text file. The same file can be read on any platform, and is compatible with
all previous and future releases. You can, however, always using the osiv dump command to extract the
data to more convenient text format. To view all of the parameters that were selected by default, run the
command

$ osiv_dump -a osiv.out

The exact meaning of each of the parameters may be found in the “manpage” for osiv corr . To view the
calculated displacement vectors, run the command

$ osiv_dump -v osiv.out | more

Section 3: Generating vector plots

The results calculated above may be visualized using vector plots generated by the program osiv draw .
The command osiv draw can be used to generate highly configurable vector plots, but like osiv corr ,
will always choose reasonable default values. To generate a plot of the flow field that was just calculated
run the following command

$ osiv_draw osiv.out

This command will generate the file osiv.eps, an Encapsulated Postscript file that can be viewed using a
program such as Ghostview, Adobe Illustrator, Apple Preview, etc.

Chapter 2: Getting Started 7

Section 4: Modifying default parameters

Upon examining the flow field in the above example, you may notice that there are a few outliers in the
data set. By default osiv corr implements the very common Fourier cross-correlation algorithm, which
is exceedingly fast though less accurate than other available methods. To re-calculate the flow field vectors
using a direct cross correlation algorithm and then write results to the file direct.osiv run the following
command

$ osiv_corr --xcorr-alg=2 -o direct.osiv flap0.tif flap1. tif

This algorithm is quite a bit slower than the default algorithm, and may take up to a minute to complete.
When it finishes, you may view the resulting flow field using the same graphing commands you used with the
previous example. If you are still not satisfied with the outliers in the data, you may re-run the correlation
using larger windows. Using larger windows has the effect of removing some outliers at the cost of decreased
spatial resolution of the resulting flow field. The default subwindow size is 32x32 pixels, to use a 64x64
window run the following command

$ osiv_corr --xcorr-alg=2 --wind-size=64 \
-o direct.osiv flap0.tif flap1.tif

This command should produce a smooth flow field. At the same time, you can easily imagine that as you
set more parameters, that passing all parameters on the command line could become very tedious. For this
reason, osiv corr can also accept parameters passed to it from a parameter file. The parameter file has
a simple text format that parallels the command line options. For example, the above example could also
performed saving the following lines to the file direct64.txt

xcorr alg = 2
wind size = 64

then running the following command

$ osiv_corr -p direct64.txt -o flap.osiv flap0.tif flap1.t if

You might notice that format of the input parameter file is very similar to the arguments list you had
previously printed with osiv dump. In fact, the output any osiv dump -a command is almost a valid
input parameter file. This file is only “almost” a valid input file as the the movie one , movie two , and
output file parameters may be specified only on the command line.

Section 5: Conclusion
Hopefully, you now have a good idea of how OSIV works in general, and how the various programs work
with each other. The following chapters will describe each of these programs in detail.

Cross-Correlation

Chapter 3

Chapter 3: Cross-Correlation 9

The heart of PIV is calculating particle displacements by performing cross-correlation on windows taken
from an image pair. OSIV provides the program osiv corr to calculate these displacements. The following
sections will describe the interface to osiv corr , and then will describe the algorithms in more detail.

Section 1: Passing Parameters

Correlation parameters can be passed to osiv corr either through the command line or via a parameter
file. Parameters may not be specified more than once in either the parameter file or the command line, but
may be specified both in the command line and parameter file. Parameters passed on the command line
will take precedence over parameters in the parameter file.

Parameter File

One of the command line options that osiv corr accepts is the name of a text file which contains additional
parameters. This allows the most common parameters to be saved in a file, and those that change for each
run to be modified on the command line. The name of the file is passed using the -p option.

The format of this parameter file is simple. The name of the variable is specified on the left of an
equals sign with the value of the parameter on the right. Whitespace is allowed anywhere in the assignment.
Quotes around the right hand value will be treated literally. Lines may be commented out using the pound
sign (‘#’). Comments may begin anywhere on the line, and may follow an assignment. Lines containing no
text or only whitespace have no effect. The following is a typical parameter file

parameters from JAS
xcorr alg = 1
wind size = 32 # TODO: too big?
disp xoffset = 3
disp yoffset = 0

my own modifications
grid xspacing=1
grid yspacing=1

The variable names in the parameter file are nearly identical to the options that may be specified on the
command line. The difference is only that variables on the command line use a hyphen to separate words,
whereas variables in the parameter file use underscores.

Invalid Parameters
It is certainly possible to specify unusable combinations of parameters. For example, giving incorrect image
dimensions, vector grids that extend past the actual image, and so on. For the most part these restrictions
are simply common sense, but a set of inequalities which the parameter values must satisfy is given in the
Appendix. If parameters are passed which don’t satisfy these inequalities then osiv corr reports the error
and exits.

Section 2: Inputing Image Files

Image Types

Currently, osiv corr supports only two image formats: TIFF and a raw binary stream. TIFF file are
recognized as files that end with the suffix .tif or .tiff, and binary files are recognized as files that end with
the suffix .dat. It should be noted that accepting images through a binary stream is included largely for
future expansion, and should not find common use. Support for TIFF is provided by libtiff, and so the vast
majority of TIFF formats are accepted.

Image Pairs
If you simply wish to perform correlation on a set of two images, then the command line call is simple. For
example, if you had an image pair saved as flap0.tif and flap1.tif then the call would be

10 Chapter 3: Cross-Correlation

$ osiv_corr flap0.tif flap1.tif

Image Sequences
If you would like to perform correlation on a sequence of images, then the calling convention is a little more
complex. To fully specify the sequence, you must specify a start frame, a finishing frame, the frame skipping
number, and the frame set number. This is probably simpler than it sounds. Assume that you have two
arrays of images, called ‘A(i)’ and ‘B(i).’ The start frame specifies the first ‘A’ frame on which to perform
correlation. The frame set number specifies the frame number of the matching ‘B’ frame in relation to the
‘A’ frame number. The frame skipping number specifies the number of frames to skip between each pair
of images. Lastly, the movie finishing number specifies the last ‘A’ frame on which to perform correlation.
Some examples are definitely in order. Let’s say that you wanted to correlate ‘A(1)’ with ‘B(1)’, ‘A(2)’ with
‘B(2), and ‘A(3)’ with ‘B(3)’. You would use the following parameter file

movie start = 1
movie finish = 3
movie skip = 1
movie set = 0

If you wanted to perform correlation of ‘A(2)’ with ‘B(5)’ and ‘A(4)’ with ‘B(7)’, then the parameter file
would be

movie start = 2
movie finish = 4
movie skip = 2
movie set = 3

Image Sequences in Single Files
TIFF files are capable of storing multiple images in a single file. If you have stored you images in this way,
then calling osiv corr with an image sequence is identical to calling osiv corr with a single image pair.
The name of the first frame in the file is always called ‘0’ by convention. For example, to perform correlation
using the first three frames from the movies stored in the files ‘alpha.tiff’ and ‘beta.tiff’, you would use the
command

$ osiv_corr --movie-finish=2 alpha.tiff beta.tiff

You should note that since the frame number starts at zero that, the last frame should be a two and not a
three.

Image Sequences in Multiple Files
If the sequence of images is stored in multiple files then you must somehow indicate to osiv corr the name
of the file that holds the ith frame. To do this, you may pass osiv corr a image filename that closely
resembles an ANSI printf format string. If you aren’t familiar with the printf function, the examples which
follow should provide you with most of the information which you would need. Basically, osiv corr scans
over the filename replacing every ‘%d’ with the current frame number. If you were to pass it the filename
‘flap%d.tif’ then it will expect to find the 0th frame in the file ‘flap0.tif.’ So, the example from the above
section Image Pairs could just have easily have been made with the command

$ osiv_corr --movie-set=1 ’flap%d.tif’ ’flap%d.tif’

In fact, it is unnecessary to pass the name of the same movie twice. If you specify a single filename, then
osiv corr assumes that you intend for both images to be taken from the same sequence. So the following
call would accomplish exactly the same thing as that above

$ osiv_corr --movie-set=1 ’flap%d.tif’

This printf convention allows a rather versatile way of manipulating the format of the frame number. If, for
example, you had a sequence of files named camel0001.tif, camel0002.tif, and so one. Then then you could
specify the following command

Chapter 3: Cross-Correlation 11

$ osiv_corr --movie-start=1 --movie-set=1 ’camel%04d.ti f’

Within the filename string, the ‘4’ specifies that the resulting number should fill four characters, while the ‘0’
indicates that the number should be padded to four characters using zeros rather than the default of spaces.
Lastly, it is suggested that the printf-style filenames which are passed on the command line be placed within
single quotes (as in the above examples). This prevents the shell from performing unexpected expansions of
the character ‘%’ that could result in invalid filenames.

Section 3: FFT Wisdom
The osiv corr uses the fftw library to perform Fast Fourier transforms. This library is extremely fast
and very versatile. It is also capable of self-tuning, using performance data gathered on previous runs
to improve cross-correlation performance. By default, osiv corr turns off most self-tuning to avoid the
startup overhead. However, if you would like to make use of this then you can generate ‘FFT wisdom’
yourself with the utility osiv tune and then pass generated file to osiv corr using the option --fft-
wisdom . This information is highly system specific, so you should try to use wisdom that is generated on
the same machine as you intend to run osiv corr . Also, the wisdom that is generated is specific to the
window size. While passing wisdom for a different window size is unlikely to hurt, it is also unlikely to help.
As an example, the following would generate a wisdom file for and run osiv corr with a 32x32 window

$ osiv_tune --wind-size 32 -o wise32.dat

$ osiv_corr --wind-size 32 --fft-wisdom wise32.dat ...

Section 4: Pre-processing Algorithms

There are currently five pre-processing methods supported. The algorithm which is used is specified with
the pproc-alg option. Possible values are

0 No Pre-processing
1 Subtract to Minima
2 Add to Maxima
3 Stretch to Limits
4 Stretch to Variance
5 Stretch to Average

The purpose of these algorithms is to normalize for imperfections in the lighting conditions or image
capture that would cause some pixels to collect biased intensities. The algorithms seek to find trends in
long image sequences, and then normalize the images to provide an unbiased representation. It should
be noted that these algorithms should never be used on a single image pair or a small set of image pairs
where this kind of normalization is likely to do more harm then good. Unfortunately, relatively few studies
have examined the effect of this normalization on the accuracy of the correlation (but see [5, 2]), and so
concrete statements regarding the accuracy of each method are difficult. Nonetheless, when the images are
of good quality, it is likely that pre-processing can omitted with little ill-effect. But when the images contain
excessive background data, the ”subtract to minima” algorithm is likely to improve displacement quality.

Subtract to Minima
This algorithm finds the minimum pixel value for a particular pixel location over the set of all frames,
then adds the difference between the smallest representable pixel value and this value to the the same pixel
location in every frame. This has the effect of shifting the intensity of the entire image down, such that the
lowest intensity pixels have the lowest representable values.

ξ⋆(~x, t) = ξ(~x, t) + ϑmin − ξmin(~x)

where ξ⋆(~x, t) is the normalized image, ξ(~x, t) is the unnormalized image, ϑmin is the smallest representable
pixel intensity, and ξmin(~x) is the minimum pixel intensity from the set of all frames.

12 Chapter 3: Cross-Correlation

Add to Maxima
This algorithm finds the maximum pixel value for a particular pixel location over the set of all frames, then
adds the difference between the largest representable pixel value and this value to the same pixel location
in every frame. This has the effect of shifting the intensity of the entire image up, such that the highest
intensity pixels have the highest representable values.

ξ⋆(~x, t) = ξ(~x, t) + ϑmax − ξmax(~x)

where ξ⋆(~x, t) is the normalized image, ξ(~x, t) is the unnormalized image, ϑmax is the largest representable
pixel intensity, and ξmax(~x) is the maximum pixel intensity from the set of all frames.

Stretch to Limits
This algorithm causes the minimum pixel intensity to be placed at the smallest representable pixel value,
and the maximum intensity to be placed at the largest representable pixel value. This has the effect of
stretching the range of the intensity values in the image to match the range of representable values.

ξ⋆(~x, t) =
ϑmax − ϑmin

ξmax(~x) − ξmin(~x)
(ξ(~x, t) − ξmin(~x)) + ϑmin

where variables are defined as above.

Stetch to Variance
This algorithm causes the center 95% of the pixels values to be stretched over the representable domain,
while the remaining 5% are saturated at the limits. This is similar to the Stretch to Limits algorithm, except
that it uses a more statistical representation of the intensity range.

ξ⋆(~x, t) =
1

4 ξstd

(ϑmax − ϑmin) (ξ(~x, t) − ξavg(~x) + 2 ξstd(~x)) + ϑmin

where ξstd(~x) is the standard deviation of the pixel intensity, and ξavg(~x) is the mean pixel intensity.

Stretch to Average
This assumes that a zero pixel value should correspond to the smallest representable pixel value, then scales
the all the pixel values such that the average observed intensity has the pixel value in the middle of the
representable range.

ξ⋆(~x, t) =

(

ϑmax − ϑmin

2 ξavg(~x)

)

ξ(~x, t) + ϑmin

Normalized values which exceed the variable range are rounded to the nearest representable value.

Section 5: Correlation Algorithms

There are currently ten correlation algorithms supported. The algorithm which is used is specified with the
xcorr-alg option. Possible values are

1 Direct Least Squares
2 Fast Direct Least Squares
3 Direct Correlation
4 Fast Direct Correlation
5 Fourier Correlation
6 Fourier Least Squares
7 Iterative Fourier Correlation
8 Direct Normalized Correlation
9 Fast Direct Normalized Correlation
10 Fourier Normalized Correlation

For example, to perform correlation using Direct Least Squares, you would use a command of the form

Chapter 3: Cross-Correlation 13

$ osiv_corr --xcorr-alg=2 ...

The following sections will describe each of the algorithms in detail. It may be useful to skip these sections
your first time through this document.

Direct Least Squares
This algorithm minimizes the least squares difference between a window in the present frame and the
window shifted by some displacement in the next frame. This direct calculation is generally slower than
methods using Fourier-based cross-correlation, but often yields less RMS error compared to both direct
cross-correlation and Fourier-based cross-correlation methods [3, 4, 9].

Formally, we define the the error function, ε(x, y, δx, δy), to be

ε(x, y, δx, δy) =

Wx−1
∑

i=0

Wy−1
∑

j=0

(ξ1(x + i, y + j) − ξ2(x + i + δx, y + j + δy)2

where (Wx, Wy) are the dimensions of the evaluation window, (x, y) is the position of the upper-left corner
of the window, (δx, δy) is the displacement vector, ξ1 is the first image, and ξ2 is the second image. The
displacement (δx, δy) for which ε(x, y, δx, δy) is minimized is considered the best approximation to the true
displacement.

Fast Direct Least Squares
This is mathematically identical to the Direct Least squares algorithm, but manages to avoid the computa-
tional redundancy associated with overlapping window portions. This is accomplished by first calculating an
indefinite sum for the whole image, then evaluating the sum at specific points to calculate the sum for indi-
vidual windows. It has all of the benefits of a direct least squares (it yields exactly the same displacements),
but is generally faster.

Formally, we first define the indefinite sum, ζ(x, y, δx, δy), be given by

ζ(x, y, δx, δy) =

x
∑

i=0

y
∑

j=0

(ξ1 (i, j) − ξ2 (i + δx, j + δy))
2
,

where (δx, δy) is the displacement vector, ξ1 is the first image, and ξ2 is the second image.
Then the error function, ε(x, y, δx, δy), is given by

ε(x, y, δx, δy) = ζ(x − 1, y − 1, δx, δy) + ζ(x + Wx − 1, y + Wy − 1, δx, δy)−

ζ(x − 1, y + Wy − 1, δx, δy) − ζ(x + Wx − 1, y − 1, δx, δy)

As before, the displacement (δx, δy) for which ε(x, y, δx, δy) is minimized is considered the best approxima-
tion to the true displacement.

Direct Correlation
This algorithm performs an unnormalized direct cross-correlation, and has been described as an approxi-
mation to the Direct Least Squares algorithm [4]. This algorithm typically results in RMS errors that are
greater than those from the Direct Least Squares algorithm [4] and, as such, is included only for comparative
purposes.

Formally, consider an expansion of the least squares error function

(ξ1(x, y) − ξ2(x + δx, y + δy))
2

= ξ2

1
(x, y) + ξ2

2
(x + δx, y + δy) − 2 ξ1(x, y) ξ2(x + δx, y + δy)

The first term is not a function of (δx, δy) and thus does not affect the location of the minimum. The second
term is a function of (δx, δy); however, as it is the sum of an arbitrary window in the second image, it is
expected to remain constant for relatively large windows taken from a homogenous image ξ2(x, y). Thus,
we take the correlation function ε̂(x, y, δx, δy) as

14 Chapter 3: Cross-Correlation

ε̂(x, y, δx, δy) =

Wx−1
∑

i=0

Wy−1
∑

j=0

ξ1 (x + i, y + j) ξ2 (x + i + δx, y + j + δy) ,

whose maxima correspond approximately to minima of the function ε(x, y, δx, δy).

Fast Direct Correlation
This algorithm is mathematically identical to the Direct Correlation algorithm but, similarly to the Fast
Direct Least Squares algorithm, eliminates redundancy associated with overlapping windows to achieve
improved performance.

The mathematical basis of this algorithm closely mirrors that of the Fast Direct Least Squares, and will
consequently be omitted. The difference between the two algorithm lies only in that here the indefinite sum
is given by

ζ(x, y, δx, δy) =

x
∑

i=0

y
∑

j=0

ξ1(i, j) × ξ2(i + δx, j + δy)

Fourier Correlation
This algorithm makes use of the Faltung Theorem in order to make a fast approximation of an unnormalized
direct cross correlation. Due to the high performance of this algorithm it is frequently preferred, though it is
known to produce greater RMS errors [4] and peak-locking artifacts [6] then corresponding direct methods.

Formally, for large arrays one finds that

ε̂(x, y, δx, δy) ≈ ε̌(x, y, δx, δy) = F−1[F [ξ1] · F
∗[ξ2]],

where F [] is the Fourier transform, F−1[] is the inverse Fourier transform, and ()∗ denotes the complex
conjugate.

Fourier Least Squares
This method could be appropriately called a “Fourier-accelerated” Direct Least Squares. The location of
the correlation peak is calculated as in the “Fourier Correlation” method, however, the direct least squares
error is then calculated around this peak and then used for subpixel interpolation. This algorithm results in
performance that approximates the Fourier Correlation algorithm with accuracy that approaches the Direct
Least Squares. [4]

Iterative Fourier Correlation
Due to assumptions inherent in Fourier cross correlation, the RMS error of calculated displacements tends
to increase at greater true particle displacements. The Iterative Fourier Correlation algorithm attempts to
compensate for this effect by iteratively shifting the correlation window toward the calculated displacement,
such that the final subpixel interpolation occurs around a cross-correlation map whose peak occurs at a
zero displacement. This algorithm has improved performance compared with a direct calculation, and has
improved accuracy compared with typical Fourier Correlation. [12]

Direct Normalized Correlation
This algorithm performs a normalized direct cross-correlation. This algorithm differs from the direct correla-
tion in that it is normalized to compensate for variation in the local image intensity. This algorithm typically
results in very low bias and RMS error [10], but with greater computational cost than FFT-accelerated al-
gorithms.

Formally, we take the normalized cross-correlation function ε̂(x, y, δx, δy) as

ε̂(x, y, δx, δy) =

∑Wx−1

i=0

∑Wy−1

j=0
ξ′
1
(x + i, y + j) ξ′

2
(x + i + δx, y + j + δy)

√

(

∑Wx−1

i=0

∑Wy−1

j=0
ξ′
1
(x + i, y + j)

2

) (

∑Wx−1

i=0

∑Wy−1

j=0
ξ′
2
(x + i + δx, y + j + δy)

2

)

Chapter 3: Cross-Correlation 15

where

ξ′
1
(x + i, y + j) = ξ1 (x + i, y + j) −

1

WxWy

Wx−1
∑

m=0

Wy−1
∑

n=0

ξ1 (x + m, y + n)

ξ′
2
(x + i, y + j) = ξ2 (x + i, y + j) −

1

WxWy

Wx−1
∑

m=0

Wy−1
∑

n=0

ξ2 (x + m, y + n)

Fast Direct Normalized Correlation
This algorithm is mathematically identical to the Normalized Correlation algorithm but, similarly to the
Fast Direct Least Squares algorithm, eliminates redundancy associated with overlapping windows to achieve
improved performance.

The mathematical basis of this algorithm closely mirrors that of the Fast Direct Least Squares, and will
consequently be omitted.

Fourier Normalized Correlation
This method is entirely analogous to the Fourier Least Squares method. The location of the correlation
peak is calculated as in the “Fourier Correlation” method, however, the direct normalized correlation is then
calculated around this peak and then used for subpixel interpolation. This algorithm results in performance
that approximates the Fourier Correlation algorithm with accuracy that approaches the Direct Normalized
Correlation.

Section 6: Signal-to-Noise Ratio

Each correlation algorithm will provide a signal-to-noise ratio for each calculated displacement. For algo-
rithms in which the correlation between two windows is maximized, the signal-to-noise ratio is taken as the
peak correlation divided by the second highest correlation value. For algorithms in which the error between
two windows is minimized, the signal-to-noise ratio is taken as the second smallest error divided by the
minimum error. In both cases, the displacements immediately adjacent to the signal peak/minimum will
excluded when searching for the noise peak/minimum. The size of the excluded region can be controlled
with the snr-xexcl and snr-yexcl options. In very rare circumstances it is not possible to calculate
the signal-to-noise ratio for a displacement. For example, when the noise peak is exactly equal to zero the
signal-to-noise ratio is mathematically undefined. Such cases are unlikely to occur with real images, but
may occur with synthetic images. When such a data set is encountered the signal-to-noise ratio is set to
zero.

Section 7: Interpolation Algorithms

Here each of the interpolation algorithms included in OSIV is presented first qualitatively and then mathe-
matically. Available algorithms include

0 No Interpolation
1 Gaussian Interpolation
2 Parabolic Interpolation
3 Paraboloidal Interpolation
4 Centroid Interpolation

Gaussian Interpolation
This method fits the peak of the cross-correlation map to a Gaussian function using the value at the peak
and the values at the peak’s two nearest neighbors. Two independent fits are performed to approximate the
subpixel displacement in the x and y directions. This method shows little bias, minimal peak-locking, and
is the preferred peak interpolation method. [8, 7]

Formally, we calculate the subpixel offset as

16 Chapter 3: Cross-Correlation

x − x◦ =
1

2

ln ξ(x◦ − 1) − ln ξ(x◦ + 1)

ln ξ(x◦ − 1) + ln ξ(x◦ + 1) − ln ξ(x◦)

where x◦ is the location of the extreme value and ξ(x) is the value of the correlation map at a displacement
of x.

Parabolic Interpolation
This method fits the peak of the cross-correlation map to a parabolic function using the value at the peak
and the values at the peak’s two nearest neighbors. Two independent fits are performed to approximate the
subpixel displacement in the x and y directions. This method shows greater peak-locking than Gaussian
interpolation [7], and is included only for comparative purposes.

Formally, we calculate the subpixel offset as

x − x◦ =
1

2

ξ(x◦ + 1) − ξ(x◦ − 1)

ξ(x◦ − 1) + ξ(x◦ + 1) − 2 ξ(x◦)

where x◦ is the location of the extreme value and ξ(x) is the value of the correlation map at a displacement
of x.

Paraboloidal Interpolation
This method fits the peak of the cross-correlation map to an elliptic paraboloidal function using the value
at the peak and the values at the peak’s eight nearest neighbors. Two fits are performed to approximate
the subpixel displacement in the x and y directions. To the best of this author’s knowledge, the accuracy
of such interpolation is unevaluated within the literature.

Formally, we calculate the subpixel offset as

x − x◦ =
1

2

ξ̄(x◦ + 1) − ξ̄(x◦ − 1)

ξ̄(x◦ − 1) + ξ̄(x◦ + 1) − 2ξ̄(x◦)

where,

ξ̄(x) = ξ(x, y◦ − 1) + ξ(x, y◦) + ξ(x, y◦ + 1).

and x◦ is the location of the extreme value and ξ(x, y) is the value of the correlation map at a displacement
of (x, y).

Centroid Interpolation
This method calculates subpixel displacement based on the centroid of the peak. This method tends to
result in peak-locking [13] and, as such, is included only for comparative purposes.

Formally, we calculate the subpixel offset as

x − x◦ =
ξ(x◦ + 1) − ξ(x◦ − 1)

ξ(x◦ − 1) + ξ(x◦) + ξ(x◦ + 1)

and x◦ is the location of the extreme value and ξ(x) is the value of the correlation map at a displacement
of (x).

Section 8: References

[1] R. Adrian. Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech.,
23:261–304, 1991.

[2] A.M. Fincham and G.R. Spedding. Low cost, high resolution DPIV for measurement of turbulent fluid
flow. Exp. Fluids, 23:449–462, 1997.

Chapter 3: Cross-Correlation 17

[3] L. Gui and W. Merzkirch. A method of tracking ensembles of particle images. Exp. Fluids, 28:465–468,
1996.

[4] L. Gui and W. Merzkirch. A comparative study of the MQD method and several correlation-based piv
evaluation algorithms. Exp. Fluids, 28:36–44, 2000.

[5] M. Honkanen and H. Nobach. Background extraction from double-frame PIV images. Exp. Fluids,
2005:349–362, 2005.

[6] H. Huang, D. Dabiri, and M. Gharib. On errors of digital particle image velocimetry. Meas. Sci. Tech.,
8:1427–1440, 1997.

[7] L. Lourenco and A. Krothpalli. On the accuracy of velocity and vorticity measurements with PIV. Exp.

Fluids, 13:421–428, 1995.

[8] M. Marxen, P. E. Sullivan, M. R. Loewen, and B. Jähne. Comparison of gaussian particle center
estimators and the achievable measurement density for particle tracking velocimetry. Exp. Fluids,
29:145–153, 2000.

[9] S. P. McKenna and W. R. McGillis. Performance of digital image velocimetry processing techniques.
Exp. Fluids, 32:106–115, 2002.

[10] M. Piirto, H. Eloranta, P. Saarenenrinne, and R. Karvinen. A comparative study of five different piv
interrogation algorithms. Exp. Fluids, 39:571–588, 2005.

[11] J. Westerweel. Fundamentals of digital image velocimetry. Meas. Sci. Tech., 8:1379–1392, 1997.

[12] J. Westerweel, D. Dabiri, and M. Gharib. The effect of a discrete window offset on the accuracy of
cross-correlation analysis of digital PIV recordings. Exp. Fluids, 23:20–28, 1997.

[13] C. Willert. Digitial particle image velocimetry. Exp. Fluids, 10:181–193, 1991.

